Identities inside the Gluon and the Graviton Scattering Amplitudes- an approach to BCJ conjecture

The duality between the color and kinematic factors, gluon and graviton scattering amplitude via Heterotic string theory

Henry Tye and Yang Zhang

Laboratory for Elementary Particle Physics, Cornell University
March 26, 2010 ICTP

based on arXiv:1003.1732, Henry Tye and Y. Z.

BCJ conjecture

M-gluon tree amplitude in pure Yang-Mills theory is
$\mathcal{A}_{M}^{\mathrm{YM}}=\sum_{i}^{(2 M-5)!!} \frac{c_{i} n_{i}}{P_{i}} . c_{i}$ color factor. n_{i} kinematic factors. P_{i} poles.
Z.Bern, J.Carrasco and H.Johansson conjecture that, which is checked by computer until $M \leq 8$. (hep-ph/0805.3993)

BCJ conjecture

M-gluon tree amplitude in pure Yang-Mills theory is
$\mathcal{A}_{M}^{\mathrm{YM}}=\sum_{i}^{(2 M-5)!!} \frac{c_{i} n_{i}}{P_{i}} . c_{i}$ color factor. n_{i} kinematic factors. P_{i} poles.
Z.Bern, J.Carrasco and H.Johansson conjecture that, which is checked by computer until $M \leq 8$. (hep-ph/0805.3993)
(1) If three color factors satisfy (Jacobi) $c_{i}+c_{j}+c_{k}=0$, then the corresponding $n_{i}+n_{j}+n_{k}=0$.
(2) M-graviton tree amplitude in Einstein theory is

$$
A_{M}^{\mathrm{Grav}}=\sum_{i=1}^{(2 M-5)!!} \frac{n_{i} n_{i}}{P_{i}} \text {. same } n_{i} \text { and } P_{i}
$$

Checked up to $M=8$, with computer.

4-gluon example

Scattering amplitude for four gluons, $\left(k_{1}, a_{1}, \zeta_{1}\right),\left(k_{2}, a_{2}, \zeta_{2}\right),\left(k_{3}, a_{3}, \zeta_{3}\right)$ and $\left(k_{4}, a_{4}, \zeta_{4}\right)$ is easily obtained by Feynman rules,

$$
\mathcal{A}_{4}^{\mathrm{YM}}=\frac{c_{s} n_{s}}{s}+\frac{c_{u} n_{u}}{u}+\frac{c_{t} n_{t}}{t}
$$

where the 4-point vertex contribution is absorb into s, t and u channels. $c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, c_{t}=f^{a_{2} a_{3} b} f^{b a_{1} a_{4}}$ and $c_{u}=f^{a_{3} a_{1} b} f^{b a_{2} a_{4}}$.

4-gluon example

Scattering amplitude for four gluons, $\left(k_{1}, a_{1}, \zeta_{1}\right),\left(k_{2}, a_{2}, \zeta_{2}\right),\left(k_{3}, a_{3}, \zeta_{3}\right)$ and $\left(k_{4}, a_{4}, \zeta_{4}\right)$ is easily obtained by Feynman rules,

$$
\mathcal{A}_{4}^{\mathrm{YM}}=\frac{c_{s} n_{s}}{s}+\frac{c_{u} n_{u}}{u}+\frac{c_{t} n_{t}}{t}
$$

where the 4-point vertex contribution is absorb into s, t and u channels. $c_{s}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}, c_{t}=f^{a_{2} a_{3} b} f^{b a_{1} a_{4}}$ and $c_{u}=f^{a_{3} a_{1} b} f^{b a_{2} a_{4}}$. However, $n_{i}{ }^{\prime} s$ are complicated,

$$
\begin{aligned}
n_{s}= & i\left[\left(\zeta_{1} \cdot \zeta_{2}\right)\left(k_{2}-k_{1}\right)-\left(2 k_{2} \cdot \zeta_{1}\right) \zeta_{2}+\left(2 k_{1} \cdot \zeta_{2}\right) \zeta_{1}\right] \\
& \times\left[\left(\zeta_{3} \cdot \zeta_{4}\right)\left(k_{4}-k_{3}\right)-\left(2 k_{4} \cdot \zeta_{3}\right) \zeta_{4}+\left(2 k_{3} \cdot \zeta_{4}\right) \zeta_{3}\right] \\
& -i\left[\left(\zeta_{1} \cdot \zeta_{3}\right)\left(\zeta_{2} \cdot \zeta_{4}\right)-\left(\zeta_{1} \cdot \zeta_{4}\right)\left(\zeta_{2} \cdot \zeta_{3}\right)\right] s \\
& n_{t}=\ldots, n_{u}=\ldots
\end{aligned}
$$

4-gluon scattering example

It is easy to see that, by Jacobi identity,

$$
c_{S}+c_{t}+c_{U}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}+f^{a_{2} a_{3} b} f^{b a_{1} a_{4}}+f^{a_{3} a_{1} b} f^{b a_{2} a_{4}}=0
$$

4-gluon scattering example

It is easy to see that, by Jacobi identity,

$$
c_{s}+c_{t}+c_{u}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}+f^{a_{2} a_{3} b} f^{b a_{1} a_{4}}+f^{a_{3} a_{1} b} f^{b a_{2} a_{4}}=0
$$

However, it is amazing that the kinematic factors satisfy the same identity as the color factors,

$$
n_{s}+n_{t}+n_{u}=0
$$

where we used the conservation of momenta, on-shell condition and the physical polarization condition $k_{i} \cdot \zeta_{i}=0$. The check of the relation is straightforward but tedious.

4-gluon scattering example

It is easy to see that, by Jacobi identity,

$$
c_{s}+c_{t}+c_{u}=f^{a_{1} a_{2} b} f^{b a_{3} a_{4}}+f^{a_{2} a_{3} b} f^{b a_{1} a_{4}}+f^{a_{3} a_{1} b} f^{b a_{2} a_{4}}=0
$$

However, it is amazing that the kinematic factors satisfy the same identity as the color factors,

$$
n_{s}+n_{t}+n_{u}=0
$$

where we used the conservation of momenta, on-shell condition and the physical polarization condition $k_{i} \cdot \zeta_{i}=0$. The check of the relation is straightforward but tedious.
Why do the color factors and the kinematic factor satisfy the same kind of identity?

5-gluon scattering example

More complicated, 15 channels

$$
\begin{array}{r}
A_{5}^{Y M}=\frac{c_{1} n_{1}}{s_{12} s_{45}}+\frac{c_{2} n_{2}}{s_{15} s_{23}}+\frac{c_{3} n_{3}}{s_{12} s_{34}}+\frac{c_{4} n_{4}}{s_{23} s_{45}}+\frac{c_{5} n_{5}}{s_{15} s_{34}}+\frac{c_{6} n_{6}}{s_{14} s_{25}}+\frac{c_{7} n_{7}}{s_{14} s_{23}}+ \\
\frac{c_{8} n_{8}}{s_{34} s_{25}}+\frac{c_{9} n_{9}}{s_{13} s_{25}}+\frac{c_{10} n_{10}}{s_{13} s_{24}}+\frac{c_{11} n_{11}}{s_{15} s_{24}}+\frac{c_{12} n_{12}}{s_{12} s_{35}}+\frac{c_{13} n_{13}}{s_{24} s_{35}}+\frac{c_{14} n_{14}}{s_{14} s_{35}}+\frac{c_{15} n_{15}}{s_{13} s_{45}}
\end{array}
$$

5-gluon scattering example

More complicated, 15 channels

$$
\begin{array}{r}
A_{5}^{Y M}=\frac{c_{1} n_{1}}{s_{12} s_{45}}+\frac{c_{2} n_{2}}{s_{15} s_{23}}+\frac{c_{3} n_{3}}{s_{12} s_{34}}+\frac{c_{4} n_{4}}{s_{23} s_{45}}+\frac{c_{5} n_{5}}{s_{15} s_{34}}+\frac{c_{6} n_{6}}{s_{14} s_{25}}+\frac{c_{7} n_{7}}{s_{14} s_{23}}+ \\
\frac{c_{8} n_{8}}{s_{34} s_{25}}+\frac{c_{9} n_{9}}{s_{13} s_{25}}+\frac{c_{10} n_{10}}{s_{13} s_{24}}+\frac{c_{11} n_{11}}{s_{15} s_{24}}+\frac{c_{12} n_{12}}{s_{12} s_{35}}+\frac{c_{13} n_{13}}{s_{24} s_{35}}+\frac{c_{14} n_{14}}{s_{14} s_{35}}+\frac{c_{15} n_{15}}{s_{13} s_{45}}
\end{array}
$$

Still, the color factors and the kinematic factors satisfy the same identities,

$$
\begin{aligned}
c_{4}+c_{15}-c_{1}=0, & n_{4}+n_{15}-n_{1}=0 \\
c_{4}+c_{7}-c_{2}=0, & n_{4}+n_{7}-n_{2}=0 \\
c_{8}+c_{9}-c_{6}=0, & n_{8}+n_{9}-n_{6}=0 \\
c_{3}+c_{8}-c_{5}=0, & n_{3}+n_{8}-n_{5}=0
\end{aligned}
$$

10 identities for c_{i} 's, and 10 dual identities for n_{i} 's.

M-gluon scattering and M-graviton scattering

More and more channels for the growing M. The number of channels, color factors, kinematic factors are all $(2 M-5)!!$. For $M \leq 8, B C J$ shows that if $c_{i}+c_{j}+c_{k}=0$, then $n_{i}+n_{j}+n_{k}=0$ and for tree level M-graviton scattering amplitude, $M \leq 8$,

$$
A_{M}^{\mathrm{Grav}}=\sum_{i=1}^{(2 M-5)!!} \frac{n_{i} n_{i}}{P_{i}}, \quad A_{4}^{\mathrm{Grav}}=\frac{n_{s} n_{s}}{s}+\frac{n_{u} n_{u}}{u}+\frac{n_{t} n_{t}}{t}
$$

Question: what is the original of these dualities?

$$
\begin{aligned}
c_{i}+c_{j}+c_{k}=0 & \Leftrightarrow n_{i}+n_{j}+n_{k}=0 \\
A_{M}^{\text {Gluon }}=\sum \frac{c_{i} n_{i}}{P_{i}} & \Leftrightarrow A_{M}^{\text {Grav }}=\sum \frac{n_{i} n_{i}}{P_{i}}
\end{aligned}
$$

M-gluon scattering and M-graviton scattering

More and more channels for the growing M. The number of channels, color factors, kinematic factors are all $(2 M-5)!!$. For $M \leq 8, B C J$ shows that if $c_{i}+c_{j}+c_{k}=0$, then $n_{i}+n_{j}+n_{k}=0$ and for tree level M-graviton scattering amplitude, $M \leq 8$,

$$
A_{M}^{\mathrm{Grav}}=\sum_{i=1}^{(2 M-5)!!} \frac{n_{i} n_{i}}{P_{i}}, \quad A_{4}^{\mathrm{Grav}}=\frac{n_{s} n_{s}}{s}+\frac{n_{u} n_{u}}{u}+\frac{n_{t} n_{t}}{t}
$$

Question: what is the original of these dualities?

$$
\begin{aligned}
c_{i}+c_{j}+c_{k}=0 & \Leftrightarrow n_{i}+n_{j}+n_{k}=0 \\
A_{M}^{\text {Gluon }}=\sum \frac{c_{i} n_{i}}{P_{i}} & \Leftrightarrow A_{M}^{\text {Grav }}=\sum \frac{n_{i} n_{i}}{P_{i}}
\end{aligned}
$$

Elegant answer: Heterotic string theory.

As a closed string theory,
State $=$ left-moving sector \times right-moving sector
Massless left-moving sector
(1) Vector sector. $i \xi_{\mu} \partial X^{\mu} e^{i k_{\nu} X^{\nu}}$
(2) Color sector. $e^{i k_{\nu} X^{\nu}+i k_{l} X^{\prime}}$ or $i \zeta_{I} \partial X^{\prime} e^{i k_{\nu} X^{\nu}}$.

As a closed string theory,
State $=$ left-moving sector \times right-moving sector
Massless left-moving sector
(1) Vector sector. $i \xi_{\mu} \partial X^{\mu} e^{i k_{\nu} X^{\nu}}$
(2) Color sector. $e^{i k_{\nu} X^{\nu}+i k_{l} X^{\prime}}$ or $i \zeta_{I} \partial X^{\prime} e^{i k_{\nu} X^{\nu}}$.

Massless right-moving sector
(1) Vector sector. $i \zeta_{\mu} \bar{\partial} X^{\mu} e^{i k_{\nu} X^{\nu}}$
(2) Spinor sector.

As a closed string theory,
State $=$ left-moving sector \times right-moving sector
Massless left-moving sector
(1) Vector sector. $i \xi_{\mu} \partial X^{\mu} e^{i k_{\nu} X^{\nu}}$
(2) Color sector. $e^{i k_{\nu} X^{\nu}+i k_{l} X^{\prime}}$ or $i \zeta_{I} \partial X^{\prime} e^{i k_{\nu} X^{\nu}}$.

Massless right-moving sector
(1) Vector sector. $i \zeta_{\mu} \bar{\partial} X^{\mu} e^{i k_{\nu} X^{\nu}}$
(2) Spinor sector.

$$
\begin{aligned}
\text { Gluon } & =\text { color sector } \times \text { vector sector } \\
\text { Graviton } & =\text { vector sector } \times \text { vector sector }\left.\right|_{\xi_{\mu} \zeta_{\nu} \rightarrow \epsilon_{\mu \nu}} \\
\text { Gluino } & =\text { color sector } \times \text { spinor sector } \\
\text { Gravitino } & =\text { vector sector } \times \text { spinor sector }
\end{aligned}
$$

KLT

In the the low energy limit, $\alpha^{\prime} \rightarrow 0$, the string scattering amplitude will reduce to the Yang-Mills or gravitity scattering amplitudes.
Closed string amplitude can be written as the product of open string amplitudes, KLT relation, (H.Kawai, D.C.Lewellen and H.Tye),

closed string amplitude

$=\sum(\ldots)($ left open string amplitude $) \times($ right open string amplitude $)$
The analytic property of the left-moving open amplitude will give the Jacobi identity while the same kind of analytic property of the right-moving amplitude will give the BCJ dual identities. Finally, the KLT product will naturally gives the duality between the guage/gravity tree amplitude.

Left-moving open amplitude

For 4-gluon scattering, we have 3 partial amplitudes for the left-moving color sectors,

$$
\begin{array}{r}
\mathbf{A}_{2134}^{L(c)}=c o(2134) \int_{-\infty}^{0} d x_{2}\left(-x_{2}\right)^{\frac{\alpha^{\prime}}{2}} k_{1} \cdot k_{2}+2 \alpha^{\prime} K_{1} \cdot K_{2}\left(1-x_{2}\right)^{\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}+2 \alpha^{\prime} K_{2} \cdot K_{3}} f\left(x_{2}\right) \\
\mathbf{A}_{1234}^{L(c)}=c o(1234) \int_{0}^{1} d x_{2} x_{2}^{\frac{\alpha^{\prime}}{2} k_{1} \cdot k_{2}+2 \alpha^{\prime} K_{1} \cdot K_{2}}\left(1-x_{2}\right)^{\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}+2 \alpha^{\prime} K_{2} \cdot K_{3}} f\left(x_{2}\right) \\
\mathbf{A}_{1324}^{L(c)}=c o(1324) \int_{1}^{\infty} d x_{2} x_{2}^{\frac{\alpha^{\prime}}{2} k_{1} \cdot k_{2}+2 \alpha^{\prime} K_{1} \cdot K_{2}\left(x_{2}-1\right)^{\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}+2 \alpha^{\prime} K_{2} \cdot K_{3}} f\left(x_{2}\right)}
\end{array}
$$

where $c o(1234)$ and etc are the product of co-cycles, which can only be $\pm 1 . f(x)$ contains the possible polarization in lattice, i.e., color index in Cartan sub-algebra. The three amplitudes are related!

Analytic continuation

The relation between the partial amplitudes was known, (E. Plahte, Nuovo Cim.A66:713-733,1970). Recent derivation, by analytic continuation, (N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, Phys. Rev. Lett. 103, 161602 (2009), S. Stieberger, 0907.2211[hep-th].), or by CFT method, (R. Boels and N. Obers, 1003.1732[hep-th].)

$$
\int_{-\infty}^{\infty} d x_{2} x_{2}^{\cdots}\left(1-x_{2}\right)^{\cdots} f\left(x_{2}\right)=0
$$

$$
e^{i \pi\left(\frac{\alpha^{\prime}}{2} k_{1} \cdot k_{2}\right)} \mathbf{A}_{2134}^{L(c)}+\mathbf{A}_{1234}^{L(c)}+e^{-i \pi\left(\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}\right)} \mathbf{A}_{1324}^{L(c)}=0
$$

Analytic continuation

The relation between the partial amplitudes was known, (E. Plahte, Nuovo Cim.A66:713-733,1970). Recent derivation, by analytic continuation, (N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, Phys. Rev. Lett. 103, 161602 (2009), S. Stieberger, 0907.2211[hep-th].), or by CFT method, (R. Boels and N. Obers, 1003.1732[hep-th].)

Analytic continuation

The relation between the partial amplitudes was known, (E. Plahte, Nuovo Cim.A66:713-733,1970). Recent derivation, by analytic continuation, (N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, Phys. Rev. Lett. 103, 161602 (2009), S. Stieberger, 0907.2211[hep-th].), or by CFT method, (R. Boels and N. Obers, 1003.1732[hep-th].)

$$
\int_{-\infty}^{\infty} d x_{2} x_{2} \cdots\left(1-x_{2}\right) \cdots f\left(x_{2}\right)=0
$$

Analytic continuation

The relation between the partial amplitudes was known, (E. Plahte, Nuovo Cim.A66:713-733,1970). Recent derivation, by analytic continuation, (N. E. J. Bjerrum-Bohr, P. H. Damgaard and P. Vanhove, Phys. Rev. Lett. 103, 161602 (2009), S. Stieberger, 0907.2211[hep-th].), or by CFT method, (R. Boels and N. Obers, 1003.1732[hep-th].)

$$
\int_{-\infty}^{\infty} d x_{2} x_{2} \cdots\left(1-x_{2}\right) \cdots f\left(x_{2}\right)=0
$$

Low energy limit

In the low energy limit, i.e., the zero slope limit only the massless state (gluon, graviton, etc.) survived so we get the field theory,

$$
\lim _{\alpha^{\prime} \rightarrow 0} \mathbf{A}_{1234}^{L(c)}=A_{1234}^{L(c)}
$$

Low energy limit

In the low energy limit, i.e., the zero slope limit only the massless state (gluon, graviton, etc.) survived so we get the field theory,

$$
\lim _{\alpha^{\prime} \rightarrow 0} \mathbf{A}_{1234}^{L(c)}=A_{1234}^{L(c)}
$$

The contour integral identity is reduced to

$$
\begin{aligned}
& A_{2134}^{L(c)}+A_{1234}^{L(c)}+A_{1324}^{L(c)}=0, \text { real part } \\
& \quad s A_{2134}^{L(c)}=t A_{1324}^{L(c)}, \text { imaginary part }
\end{aligned}
$$

Channels

One string amplitude, in the low energy limit, will decompose into several

channels,

$$
A_{2134}^{L(c)}=-\frac{\tilde{c}_{s}}{s}+\frac{c_{u}}{u}, A_{1234}^{L(c)}=\frac{c_{s}}{s}-\frac{\tilde{c}_{t}}{t}, A_{1324}^{L(c)}=-\frac{\tilde{c}_{u}}{u}+\frac{c_{t}}{t} .
$$

Plug into the contour integral identities,

$$
\begin{aligned}
A_{2134}^{L(c)}+A_{1234}^{L(c)}+A_{1324}^{L(c)}=0, & \Rightarrow \tilde{c}_{s}=c_{s}, \quad \tilde{c}_{u}=c_{u}, \quad \tilde{c}_{t}=c_{t} \\
s A_{2134}^{L(c)}=t A_{1324}^{L(c)}, & \Rightarrow c_{s}+c_{t}+c_{u}=0 .
\end{aligned}
$$

Right-moving amplitude

$$
\begin{gathered}
\mathbf{A}_{1234}^{R(v)}=\int_{0}^{1} d x_{2} x_{2}^{\frac{\alpha^{\prime}}{2} k_{1} \cdot k_{2}}\left(1-x_{2}\right)^{\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}} \bar{f}\left(x_{2}\right), \text { etc. } \\
\bar{f}\left(x_{2}\right)=\left.\exp \left(\frac{\alpha^{\prime}}{2} \sum_{i>j} \frac{\zeta_{i} \cdot \zeta_{j}}{\left(x_{i}-x_{j}\right)^{2}}-\frac{\alpha^{\prime}}{2} \sum_{i \neq j} \frac{\zeta_{i} \cdot k_{j}}{x_{i}-x_{j}}\right)\right|_{\text {multiple-linear }} .
\end{gathered}
$$

The contour integral in x_{2} gives,

$$
e^{i \pi\left(\frac{\alpha^{\prime}}{2} k_{1} \cdot k_{2}\right)} \mathbf{A}_{2134}^{R(v)}+\mathbf{A}_{1234}^{R(v)}+e^{-i \pi\left(\frac{\alpha^{\prime}}{2} k_{2} \cdot k_{3}\right)} \mathbf{A}_{1324}^{R(v)}=0 .
$$

kinematic identity

$$
A_{2134}^{R(v)}=-\frac{n_{s}}{s}+\frac{n_{u}}{u}, A_{1234}^{R(v)}=\frac{n_{s}}{s}-\frac{n_{t}}{t}, A_{1324}^{R(v)}=-\frac{n_{u}}{u}+\frac{n_{t}}{t} .
$$

Unlike the c_{i} 's, the definition of n_{s}, n_{t} and n_{u} is not unique because we can move the contact terms between each other, $n_{s}^{\prime}=n_{s}+c s$, $n_{t}^{\prime}=n_{t}+c t, n_{u}^{\prime}=n_{u}+c u$.
In the low-energy limit, the imaginary part of the contour integral identity,

$$
s A_{2134}^{R(v)}=t A_{1324}^{R(v)}
$$

gives,

$$
n_{s}+n_{t}+n_{u}=0,
$$

The duality between this and $c_{s}+c_{t}+c_{u}=0$ comes from the same contour. This identity is invariant under the contact term rearrangement,

$$
n_{s}^{\prime}+n_{t}^{\prime}+n_{u}^{\prime}=n_{s}+n_{t}+n_{u}+c(s+t+u)=0
$$

4-gluon and 4-graviton amplitudes

KLT, (color) \times (vector)
$\mathcal{A}_{4 \text {-gluon }}^{\text {het }} \propto \sin \left(\frac{\pi \alpha^{\prime} k_{2} \cdot k_{3}}{2}\right)$ $\times \mathbf{A}_{1234}^{L(c)} \mathbf{A}_{1324}^{R(v)}$.
in the low energy limit,

$$
\begin{aligned}
& \mathcal{A}_{4 \text {-gluon }} \\
& \propto t\left(\frac{c_{s}}{s}-\frac{c_{t}}{t}\right)\left(-\frac{n_{u}}{u}+\frac{n_{t}}{t}\right) \\
& =\frac{c_{s} n_{s}}{s}+\frac{c_{u} n_{u}}{u}+\frac{c_{t} n_{t}}{t},
\end{aligned}
$$

We used the identities
$c_{s}+c_{t}+c_{u}=0$ and
$n_{s}+n_{t}+n_{u}=0$.

KLT, (vector) \times (vector)
$\mathcal{A}_{4 \text {-graviton }}^{\text {het }} \propto \sin \left(\frac{\pi \alpha^{\prime} k_{2} \cdot k_{3}}{2}\right)$ $\times \mathbf{A}_{1234}^{L(v)} \mathbf{A}_{1324}^{R(v)}$.
in the low energy limit,

$$
\begin{aligned}
& \mathcal{A}_{4 \text {-graviton }} \\
& \propto t\left(\frac{n_{s}}{s}-\frac{n_{t}}{t}\right)\left(-\frac{n_{u}}{u}+\frac{n_{t}}{t}\right) \\
& =\frac{n_{s} n_{s}}{s}+\frac{n_{u} n_{u}}{u}+\frac{n_{t} n_{t}}{t},
\end{aligned}
$$

We used the identity $n_{s}+n_{t}+n_{u}=0$ twice.

M-gluon

This method is easily generalized for arbitary M -gluon tree amplitude. New feature There are many different ways to do contour integral. New feature: One contour integral argument several color (kinematic identities). Example: x_{2} contour integral in $A_{12345}^{L(c)}$,

$$
-\frac{c_{3}+c_{8}-c_{5}}{s_{34}}-\frac{c_{4}-c_{2}+c_{7}}{s_{23}}+\frac{c_{4}+c_{15}-c_{1}}{s_{45}}+\frac{c_{8}+c_{9}-c_{6}}{s_{25}}=0
$$

Read the residues

$$
c_{3}+c_{8}-c_{5}=0, c_{4}-c_{2}+c_{7}=0, c_{4}+c_{15}-c_{1}=0, c_{8}+c_{9}-c_{6}=0 .
$$

By detailed combinatorics, we proved that for arbitary M, the contour integral identities will give all the color identities between c_{i} 's.

The subtlety in n_{i} 's

There is a subtlety for $M \geq$ since n_{i} contains the contact terms, for example,

$$
-\frac{n_{3}+n_{8}-n_{5}}{s_{34}}-\frac{n_{4}-n_{2}+n_{7}}{s_{23}}+\frac{n_{4}+n_{15}-n_{1}}{s_{45}}+\frac{n_{8}+n_{9}-n_{6}}{s_{25}}=0
$$

n_{3}, n_{8} and n_{5} may contain contact terms which are proportional to s_{34}. In general $n_{3}+n_{8}-n_{5} \propto s_{34}$, but there is a choice such that $\tilde{n}_{3}+\tilde{n}_{8}-\tilde{n}_{5}=0$. We think that (still in progress),

- there exist a way to rearrange the contact terms in n_{i} 's such that $n_{i}+n_{j}+n_{k}=0$ for arbitary M.
- such a way is not unique and actually these choices form a subspace with the dimension $(M-2)$! $-(M-3)$!.

Summary

(1) (Up to the subtlety of the contact terms), a clear approach to BCJ conjecture to show the dualities between color/kinematic identities and gluon/graviton are natural.
(2) The number of kinematic factors n_{i} dropped dramatically, so the calculation is simplifyed.
(3) This method can be used for gluino and gravitinos amplitudes.

Further directions,
(1) Combined with other methods? BCFW recursion, twistor spaces...
(2) The loop amplitude is related to the tree amplitude via unitarity relations. So the BCJ conjecture would be generalized to the loop amplitude case.
(3) KLT relation, applied in heterotic string theory, seems to give a duality between the gauge amplitude and gravity amplitude, but different from AdS/CFT. Does this relation illustrate the gauge and gravity in different regime?

